Vimos que os potenciais químicos de dois líquidos A e B puros são alterados quando formam uma solução, passando a assumir os valores:
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/8ae9c6af-5fb5-44bd-84ad-e1b5b86abbce/45dea655-0e7a-4e7d-9a5b-bd850d75acc6/Designer_(2).png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/8ae9c6af-5fb5-44bd-84ad-e1b5b86abbce/45dea655-0e7a-4e7d-9a5b-bd850d75acc6/Designer_(2).png" width="40px" /> Potencial Químico de um Componente em Solução
$$ \boxed{\mu_A(l) = \mu_A^*(l) + RT\ln{x_A}} $$
</aside>
As energias livres de Gibbs dos componentes A e B antes da mistura são:
$$ G_i=n_\mathrm{A}\mu_\mathrm{A}^(l) + n_\mathrm{A}\mu_\mathrm{A}^(l)
\\
G_f=n_\mathrm{A}\mu_\mathrm{A}(l) + n_\mathrm{B}\mu_\mathrm{B}(l) $$
$$ \begin{align*} \Delta_{\mathrm{mist}}G &= n_\mathrm{A}\mu_\mathrm{A}(l) + n_\mathrm{A}\mu_\mathrm{A}(l) - n_\mathrm{A}\mu^\mathrm{A}(l) - n\mathrm{B}\mu^_\mathrm{B}(l)
\\
\Delta_{\mathrm{mist}}G &= n_\mathrm{A}\mu^\mathrm{A}(l)+n\mathrm{A}RT\ln{x_\mathrm{A}} + n_\mathrm{B}\mu^\mathrm{B}(l)+n\mathrm{B}RT\ln{x_\mathrm{B}} - n_\mathrm{A}\mu^\mathrm{A}(l) - n\mathrm{B}\mu^_\mathrm{B}(l)
\\
\Delta_{\mathrm{mist}}G &= n_\mathrm{A}RT\ln{x_\mathrm{A}} +n_\mathrm{B}RT\ln{x_\mathrm{B}}
\\
\Delta_{\mathrm{mist}}G_\mathrm{m} &= x_\mathrm{A}RT\ln{x_\mathrm{A}} +x_\mathrm{B}RT\ln{x_\mathrm{B}} \end{align*} $$
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/8ae9c6af-5fb5-44bd-84ad-e1b5b86abbce/1ef54188-155a-4196-a0ba-72e7c58db9a9/Designer_(2).png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/8ae9c6af-5fb5-44bd-84ad-e1b5b86abbce/1ef54188-155a-4196-a0ba-72e7c58db9a9/Designer_(2).png" width="40px" /> Variação de Energia Livre de Gibbs na Formação de uma Mistura Ideal
$$ \boxed{\Delta_{\mathrm{mist}}G_\mathrm{m} = RT (x_\mathrm{A}\ln{x_\mathrm{A}} +x_\mathrm{B}\ln{x_\mathrm{B}})} $$
</aside>
$$ \left( \frac{\partial G}{\partial T} \right)_{p, n_i, n_j} = -S $$
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/8ae9c6af-5fb5-44bd-84ad-e1b5b86abbce/b00a8f59-47cc-4417-a685-029ee7b69ea2/Designer_(2).png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/8ae9c6af-5fb5-44bd-84ad-e1b5b86abbce/b00a8f59-47cc-4417-a685-029ee7b69ea2/Designer_(2).png" width="40px" /> Variação de Entropia na Formação de uma Mistura Ideal
$$ \boxed{\Delta_{\mathrm{mist}}S_\mathrm{m} = -R (x_\mathrm{A}\ln{x_\mathrm{A}} +x_\mathrm{B}\ln{x_\mathrm{B}})} $$
</aside>
$$ \begin{align*} \Delta_{\mathrm{mist}} G_{\mathrm{m}} &= \Delta_{\mathrm{mist}} H_{\mathrm{m}} - T\Delta_{\mathrm{mist}} S_{\mathrm{m}}
\\
\Delta_{\mathrm{mist}} H_{\mathrm{m}} &= \Delta_{\mathrm{mist}} G_{\mathrm{m}} + T\Delta_{\mathrm{mist}} S_{\mathrm{m}}
\\
\Delta_{\mathrm{mist}} H_{\mathrm{m}}&=RT(x_A\ln{x_A}+x_B\ln{x_B})-T[R(x_A\ln{x_A}+x_B\ln{x_B})] \end{align*} $$
<aside> <img src="https://prod-files-secure.s3.us-west-2.amazonaws.com/8ae9c6af-5fb5-44bd-84ad-e1b5b86abbce/40db0cc0-475b-44fe-8285-520e7bd8cb29/Designer_(2).png" alt="https://prod-files-secure.s3.us-west-2.amazonaws.com/8ae9c6af-5fb5-44bd-84ad-e1b5b86abbce/40db0cc0-475b-44fe-8285-520e7bd8cb29/Designer_(2).png" width="40px" /> Variação de Entalpia na Formação de uma Solução Ideal
$$ \boxed{\Delta_{\mathrm{mist}} H_{\mathrm{m}} = 0}
$$
</aside>